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Abstract

Global wheat production has remained stable in the last 20 years, benefiting from
increased grain yields despite decline in harvested wheat area. Here, we conducted
a comprehensive review of ca. 300 peer-reviewed studies worldwide to outline benefits
of adding wheat to simple crop rotations (i.e., one to three rotational crops). We high-
light the wheat’s versatility for tactical in-season crop management (e.g., flexible sowing
dates, crop type [winter vs spring], and nitrogen fertility) and strategic cropping system
management (e.g., grazing and double-cropping) and provide evidence supporting the
positive impact of wheat on the grain yield and yield stability of other rotational crops.
The inclusion of wheat in simple cropping systems enhances agroecosystem diversity
and improves resilience to biotic and abiotic stresses. The high carbon-to-nitrogen ratio
(C:N) residue of wheat offers benefits and drawbacks on soil quality attributes, weed
control, and climate change mitigation potential. The introduction of wheat to simple
crop rotations can (i) interrupt pest population cycles by serving as a break crop;
(ii) decrease N application requirements, thus reducing N losses, greenhouse gas
emissions, soil acidification, and production costs; (iii) improve soil health and carbon
sequestration; (iv) increase resource use-efficiency of the cropping system; (v) foment
fauna population; and (vi) decrease variability in economic returns. This review high-
lights that wheat offers unique opportunities to increase diversification and foster more
sustainable and resilient agroecosystems that will feed a growing global population
while acting as a net carbon sink, helping to mitigate drivers of climate change.

Abbreviations
C carbon

GHG greenhouse gases

N nitrogen

P phosphorus

PUE precipitation use efficiency

PA precipitation allocation

SCN soybean cyst nematode

SOC soil organic carbon

1. Introduction

Wheat, Triticum aestivum L., provides approximately 21% of the

world’s food calories and protein (FAO, 2021). Global wheat production
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has remained relatively stable over the past two decades due to increased

grain yields and geographical shifts in production with increases in regions

such as Russia, Brazil, and Argentina (FAO, 2021). Still, some of the largest

wheat producing countries have experienced a decline in harvested wheat

hectares in the last 20 years (e.g., China, United States, Canada, and

Turkey; FAO, 2021), mostly due to expanding production of more profit-

able crops such as maize, Zea mays L., and soybean, Glycine max (L.) Merr.

We argue that reduced wheat area can be detrimental to areas where wheat

has been historically a major crop due to the many benefits and ecosystem

services that it provides to cropping systems. Further, many cropping

systems in regions where wheat has not been a major crop in the past could

also benefit from the inclusion of wheat in their rotations. We do not argue

for the adoption of monocrop wheat systems, as these may suffer from a

number of drawbacks and can potentially benefit from break crops

(Kirkegaard et al., 2008), but rather support the inclusion of wheat in

cropping systems to enhance their resilience and minimize environmental

impacts. Here, we first describe the role of wheat as a primary food crop,

and then elucidate how other crops such as maize, soybean, grain sorghum,

Sorghum bicolor (L.) Moench, cotton, Gossypium hirsutum L., and canola,

Brassica napus L., respond to the addition of wheat in crop rotations. We also

review the various benefits of wheat to agroecosystem sustainability in

various environmental, agronomic, and economic contexts.

2. The role of wheat in the global food supply chain

Feeding a growing global population with increased per capita

purchasing power poses a substantial threat for sustainable agriculture owing

to the escalating demand for nutrient-dense food (Godfray et al., 2010).

Increasing food production without expanding agricultural land and

displacing native vegetation will require sustainable increases in crop pro-

ductivity (Cassman and Grassini, 2020) without exploiting natural resources

at a pace that surpasses the Earth’s ability to replenish them (Godfray et al.,

2010). Recent events like the COVID-19 pandemic and social conflicts

such as the Ukraine and Russia war have revealed the vulnerability of global

food supply chains and the necessity for increased local diversification of

crop production to improve global food security ( Júnior et al., 2022).

Historically, increases in food production involved “extensification,” i.e.,

bringing new land into cultivation; however, competing human activities

make this an increasingly unviable and expensive option, particularly as

protection of biodiversity and the public goods offered by natural ecosystems
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(e.g., carbon [C] storage in rainforests) are given greater priority by national

governments (Pretty, 2008).Whereas global grain production has more than

doubled over the last 50 years, the area of arable land under cultivation has

only increased by about 9% (Pretty, 2008). Furthermore, highly productive

agricultural lands are often lost to urbanization and other human uses

(Andrade et al., 2022), while much land remaining under cultivation often

loses productivity due to unsustainable management practices that lead to

desertification, salinization, and soil erosion (Nellemann and Corcoran,

2009). Consequently, increased food production will have to be generated

per unit of land, i.e., agricultural “intensification.”

About 30% of global wheat production is centered in temperate regions

of North America and Europe (USDA, 2022), rendering the world’s wheat

supply vulnerable to environmental stresses in those regions (Cassman and

Grassini, 2020). Although global wheat yield has increased by 13% in the

last decade (FAO, 2021), the harvested area has remained relatively stable,

and has decreased in some historically important wheat growing regions.

For example, while the wheat area has remained stable or increased in

Asia, Africa, and South America, it has decreased in North America,

Europe, and Oceania (FAO, 2021). This decrease in wheat area is mainly

attributable to the advent of new technologies that have made other crops

more attractive to farmers (e.g., pesticide and/or drought-tolerant crops;

Cooper et al., 2014), changes in local land use policies (Anderson et al.,

2001), and volatile wheat prices (Deen et al., 2016; Mulik, 2015). When

international prices of wheat become more volatile, farmers tend to allocate

less land to wheat or reducing investments in yield-improving techniques,

ultimately leading to a decrease in wheat production (Haile et al., 2016).

For example, the Great Plains and the Midwest regions of the US, which

historically have been major wheat producing regions, have shifted sub-

stantial wheat area to maize and/or soybean (Anderson et al., 2001;

Mulik, 2017), resulting in a simplified 2 years maize-soybean rotation, as

highlighted in a number of recent surveys of management practices (e.g.,

Grassini et al., 2011, 2015). This shift has raised concerns about environ-

mental sustainability due to loss of biodiversity, which could adversely

affect crop yields and global food security compared to rotations that

include wheat (Gaudin et al., 2015b). Risks include reduced system stability

(i.e., ability to cope with biotic and abiotic stresses to maintain productivity)

and resilience (i.e., the ability of a system to assimilate disturbance and

retain essential functions during the period of change) (Holling, 1973;

Walker et al., 2004), both of which are key to sustaining agricultural
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productivity in the face of environmental stresses like climate change and the

evolution of pesticide-resistant pests (Lin, 2011). The review of Liu et al.

(2022) highlighted the evidence suggesting that crop diversification

enhances cropping systems resilience. However, whereas many US farmers

acknowledge the advantages of diversifying a 2-year maize-soybean rota-

tion, the challenge of identifying alternate crops with similar or better

financial returns currently limits the inclusion of other crops in rotation

(Roesch-McNally et al., 2018). Wheat is one of the main crops historically

grown globally and widely adaptable to many environments (Acevedo

et al., 2002).

3. Wheat within cropping systems

This section describes the versatility of wheat within cropping systems,

and summarizes the findings of long-term experiments that analyze the

benefits and limitations of wheat in crop rotations. Numerous studies have

demonstrated that wheat can significantly improve yield and yield stability

in a subsequent crop, specifically maize, soybean, cotton, and canola in a

variety of tillage systems and nitrogen (N) management strategies, although

a few studies found neutral or even negative effects.

3.1 Wheat as a versatile crop
Early wheat growth prior to the critical period of yield determination

(i.e., from onset of stem elongation until�10 days post anthesis, when grain

number is defined; Fischer, 1985) is not as important for grain yield as the

duration, growth rate, and partitioning of resources during the critical

period (Slafer et al., 2023). The reduced importance of early vegetative

growth to grain yield provides flexibility in management and crop utilization

alternatives (Fig. 1).

3.1.1 Tactical in-season management
Wheat yields are relatively insensitive to suboptimal conditions during

vegetative growth, enabling famers to select from a range of management

alternatives those which best match environmental conditions and crop

development (Slafer et al., 2023). For example, low sensitivity to vegetative

growth provides improved flexibility in sowing dates, in particular for

winter wheat, in comparison to spring-planted crops (e.g., spring wheat,

maize, soybeans) that have a more defined growth window. Warm regions

of the US Great Plains have particularly wide sowing windows for winter
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wheat—as much as a 50–66 days range—where the loss in yield potential is

less than 8–13kgha�1 day�1 ( Jaenisch et al., 2021; Munaro et al., 2020).

Whereas the optimum sowing window for winter wheat is narrower in

colder, northerly regions ( Jaenisch et al., 2021; Munaro et al., 2020), as well

as manyMediterranean environments where sowing into stored soil moisture

is limited to a 2- to 3-week time window (Cann et al., 2020; Donaldson,

1996), it is still wider than that of spring-planted summer crops which tend

to show a strong linear decrease in yield potential with delays in sowing,

suggesting a narrower optimal window for attaining high yields (e.g.,

Edreira et al., 2017; Grassini et al., 2015). A wider optimum window allows

growers to target sowing during periods of appropriate conditions for crop

emergence, which often vary along geographic gradients (Lollato et al.,

2021), improving the probability of good stand establishment and high

yield potential.

In some regions, the cultivation of either spring or winter wheat geno-

types offer additional flexibility (e.g., Cann et al., 2020; Entz and Fowler,

1991; Koppel et al., 2020; Krato and Petersen, 2012; Stoskopf et al.,

1974), and provides opportunities to capitalize on optimum sowing condi-

tions for either of these crops (although the yield of spring wheat is usually

Fig. 1 Schematic representation of the uses and opportunities of wheat in a farming
system.
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lower than that of winter wheat due to harsher environmental conditions

during the critical period; Couëdel et al., 2021; Slafer et al., 2023). This flex-

ibility in sowing time and crop type allows growers to explore genotypes

with different vernalization requirements to maximize the chances of

flowering to occur during periods with minimal risk of drought, heat stress,

and freeze damage (Flohr et al., 2018; Hunt et al., 2019).

The low impact of early growth stages on wheat grain yield provides

flexibility for timing N fertilization. Ravier et al. (2017) suggested that

periods of N deficiency prior to the onset of stem elongation not only failed

to decrease yield and grain protein content, but actually improved N use

efficiency in some cases. These findings have been replicated elsewhere

(e.g., Souza et al., 2022), and have contributed to the development and

widespread adoption of remote sensing technologies for N rate deter-

mination in winter wheat. Remote sensing technologies for Nmanagement

typically use canopy reflectance during the vegetative stages to estimate yield

potential of a field showing symptoms of N deficiency (Fig. 2A) relative to a

reference “N-rich strip” (Mullen et al., 2003; Raun et al., 2001; Solie

et al., 2002).

In support of the above rationale, we re-evaluated the data of Souza et al.

(2022), where a fall-applied N treatment was compared to a zero N control,

and subsequent treatments were established when N deficiency symptoms

became detectable in the control via crop reflectance. Treatments consisted

of the sameN rate as the fall-applied N, but applications occurred at different

times (i.e., 0, 7, 14, 21, 28, 35, 42, 49, 56, and 63 accumulated thermal units

since N deficiency was first observed in the control). The last N application

occurred from 60 to 117 days after N deficiency symptoms were first

observed. The experiment was conducted in 12 Oklahoma (USA) environ-

ments in which the yield of the unfertilized control (Y0) ranged from 1.3 to

3.5Mgha�1, and was expressed relative to yields in the fall-applied N

treatment (YN) [calculated as y¼100 (YN�Y0)/Y0], which ranged from

13% to 172% (Fig. 2B). We re-analyzed these data by plotting differences

in yield between N treatments applied after the onset of N deficiency

(Yt) and those in the fall-applied N treatment at each site [calculated as

y¼100 (Yt�YN)/YN] vs the number of days between N fertilization

and the beginning of the critical period (Fig. 2C). The initiation of the

critical period was modelled in each site-year using local weather and the

model developed by Carlson and Edwards (2015). Here, negative x values

indicate N applications that occurred during vegetative stages, whereas

positive x values indicate N applications after the onset of the critical period;
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note that in both cases the N was applied to wheat plants that were already

N-deficient. The data followed a plateau-linear model, suggesting that N

application to N-deficient wheat during the 107-day vegetative period prior

to the onset of the critical period, resulted in yields that were 16% greater

than yields obtained in the fall-applied N. The breakpoint of the model

occurred at the onset of the critical period (estimate: 6 days; confidence

interval [CI]: �6 to 18 days); applying N later than the onset of the critical

period reduced yield increases from N fertilizer at a rate of �0.7% day�1

(CI: �0.5% to �1.0% day�1) (Fig. 2C). This demonstrates the ability of

wheat to handle early N stress without yield penalty, which allows for

adjustments of N application timing and accommodation of environmental

conditions to reduce N losses, improve N use efficiency, and thus increases

Fig. 2 Wheat can sustain nitrogen (N) deficiency during vegetative stages without yield
penalty. (A) Use of N-rich strip technology to determine N rates for wheat using
in-season canopy reflectance measurements. This N-management tool makes recom-
mendations for fields that are already N-deficient to aid crop recovery. (B and C)
Re-analysis of Souza et al. (2022) data showing (B) yield response to fall-applied N vs
the zero N control, as function of zero N control yield, in 12 Oklahoma (USA) environ-
ments; and (C) yield difference between N treatments applied at 0, 7, 14, 21, 28, 35, 42,
49, 56, and 63 thermal units after N-deficiency symptoms were first observed in the con-
trol, as function of the time of N fertilization from onset of the critical period in each
environment. For experimental description and site-specific details, see Souza et al.
(2022). (Panel A) Photo credit and approval for publication: Dr. Brian Arnall.
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return on investment (Giordano et al., 2023; Hu et al., 2021; Lollato et al.,

2021). It also creates opportunities to adjust N rates to soil- and season-

specific conditions that will affect yield potential (Raun et al., 2008).

3.1.2 Strategic crop system management
The low sensitivity of grain yield to stresses during wheat vegetative

growth allows for its use as a high-quality forage and as a dual-purpose crop

(grazing plus grain), as reviewed by Harrison et al. (2011a). Dual-purpose

pastures of wheat are common around the world (Edwards et al., 2011;

Hu et al., 2019; Sprague et al., 2021). According to Harrison et al.

(2011a), wheat can be grazed for a short duration at medium to high inten-

sities in Mediterranean climatic regions (e.g., Australia, Italy, West Asia, and

Africa; Kelman and Dove, 2009), or for a longer duration at a lower stocking

rate in the US Great Plains (Holman et al., 2010; Khalil et al., 2002). Winter

wheat can produce as much as 3.5Mg ha�1 of high protein dry matter and

allow for as many as 120–150 days of grazing during fall and winter, a period
when other forages are mostly unavailable (Holman et al., 2010). Spring

wheat can also be pastured prior to harvesting for grain (Bartmeyer et al.,

2011; Seymour et al., 2015), capturing the benefits of forage for animal pro-

duction with negligible or small tradeoffs in grain yield, provided that graz-

ing is terminated prior to onset of the critical period for yield determination

(Slafer et al., 2023). This is high quality forage, often containing 20–30%
crude protein and less than 45% neutral detergent fiber, with high digestibil-

ity (Holman et al., 2010). This high-yield, high-quality forage allows for cat-

tle, Bos taurus L., stocking rates of up to �530kg of animal ha�1 during fall,

and �890kg of animal ha�1 in early spring, with potential stocker gains of

up to 1.1kgday�1 (Lollato et al., 2017); and for as many as 30 days of grazing

byMerino sheep,Ovis aries, at 1965 sheepha�1 (Harrison et al., 2011b). This

dual-purpose option allows for flexibility to either completely graze out the

crop as a pasture, or remove cattle at the appropriate time to allow grain pro-

duction (Edwards et al., 2011). This decision can be made on partial enter-

prise budgets for both cattle and grain (e.g., Lollato et al., 2018), permitting

timely adaptation to market conditions. Finally, Harrison et al. (2011a) and

Baumhardt et al. (2009) also suggested that grazing wheat in highly produc-

tive environments can reduce stubble loads and facilitate cultural operations

in subsequent crops, although there is a slight risk of compaction in suscep-

tible soils (Krenzer Jr. et al., 1989).

Another example of the versatility of wheat is its potential to be double-

cropped with summer crops, either via delayed sowing after the summer
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crop (Staggenborg et al., 2003), or by delayed planting of the summer crop

after winter wheat (Santos Hansel et al., 2019). This permits intensification

of cropping systems by allowing the cultivation of more than one cash crop

per year in some summer-rainfall temperate regions where growing seasons

are limited by cold winters (Purcell et al., 2003). In subtropical regions with

mild winters such as southern Brazil, the adoption of a spring wheat crop

sown in the fall can allow for the production of a second cash crop within

the same calendar year (e.g., Garbelini et al., 2022). Further, efforts to

improve the crop’s tolerance to biotic (e.g., Cruppe et al., 2023; Webber

et al., 2023) and abiotic factors (Pereira et al., 2019), and to refine agronomic

recommendations (e.g., Galindo et al., 2017; Teixeira Filho et al., 2011,

2014) could potentially allow for the cultivation of wheat as a second crop

in as many as 4.5–7.9 million hectares in the Cerrado region of Brazil

(Pasinato et al., 2018).

3.2 Wheat impacts on the grain yield of other rotational crops
A number of long-term studies around the world have shown that including

wheat in a crop rotation can benefit the yield of other crops, both in humid

and semi-arid regions. For example, a 10-year study in Illinois, USA, by

Zacharias and Grube (1984) suggested greater maize and soybean yields

in a maize-soybean-wheat rotation compared to systems including only

maize and/or soybean. In a long-term study (44 years) in eastern Kansas,

Simão et al. (2023) reported a 27% soybean yield increase in rotation with

winter wheat as compared to a continuous soybean cultivation. In this case,

soybean in rotation with winter wheat also had greater yield than soybean in

rotation with grain sorghum. Similar results were reported by Marburger

et al. (2015) in Wisconsin, USA; both maize and soybean had 5–8% yield

increase when following wheat, and the authors concluded that including

wheat in a maize-soybean rotation was one of the best management strate-

gies to maximize yields in all three crops. Three later studies in Wisconsin,

ranging in length from 7 to 10 years, showed that inclusion of winter wheat

in a maize-soybean rotation increased maize and soybean yields by 8% and

22%, respectively, andmaize yield was 15% greater (ca. +1.5Mgha�1) in the

maize-soybean-wheat rotation than in continuous maize (Kazula and Lauer,

2018). In Alabama, USA, Edwards et al. (1988) found that soybean yields

were 6% greater in a maize-soybean-wheat rotation compared to

maize-soybean only. In Indiana, USA, Martin et al. (1991) found greater

soybean yields under a soybean-wheat-maize rotation than under
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soybean-maize, as the inclusion of wheat extended the period between two

soybean crops, thereby reducing the frequency of soybean in the system,

which was beneficial for yields. This trend was also observed in studies con-

ducted in New York (Katsvairo and Cox, 2000b), South Dakota (Lehman

et al., 2017), and Brazil (Garbelini et al., 2022). In eastern Canada, Gagnon

et al. (2019) found that diminishing the frequency of soybean from every

year (continuous soybean) to once every 3 years (maize-soybean-wheat)

increased soybean yield by 0.20Mgha�1. Although results were consistent

for maize, there was no significant yield benefit for moving from

maize-soybeans to maize-soybean-wheat.

We retrieved data published in peer-reviewed manuscripts to compare

the yield of maize and soybean when grown as monoculture, in maize-

soybean rotation, and in maize-soybean-wheat rotation. Maize and soybean

yields increased by the addition of wheat to the rotation as compared to con-

tinuous plantings of these crops (Fig. 3). The mean difference between

maize-soybean-wheat vs maize-soybean, or a monocrop, was positive and

significantly different from zero in all instances except for maize under

maize-soybean (inset graphs, Fig. 3A and B). In all cases, the slope was

not statistically different from one, suggesting that these yield benefits were

consistent across yield environments.

In a long-term (14 years) study in Ontario, Canada, the inclusion of

wheat in a maize-soybean rotation increased maize and soybean yields,

averted yield losses due to zone-tillage, and increasedN availability for maize

via wheat shoot and root biomass mineralization, thus reducing N fertilizer

requirements (Gaudin et al., 2015a). Furthermore, adding wheat to the

system increased soybean yields by an average of 0.47Mgha�1 across tillage

systems (conventional and zone-till) (Gaudin et al., 2015a). Although high

N application rates offset the benefits of including wheat in maize-based

rotations to maize yield, maize yields under lowN rates were similar to those

under high rates when wheat was included in the rotation. Thus, inclusion

of wheat in maize-based systems decreased the amount of N amendment

required to maximize maize yields, while stabilizing the impact of tillage

on crop yield.

Canola and chickpea, Cicer arietinum L., yields can also benefit from lon-

ger crop rotation intervals that include wheat. A long-term (30 years) study

in Canada showed that nodulation of chickpea and, consequently, grain

yield, were both improved in rotation with spring wheat compared to

chickpea planted continuously or rotated with mustard, Brassica juncea

L. (Li et al., 2019b). Harker et al. (2015) observed that inclusion of spring
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wheat in the system increased canola yields in dryland regions of western

Canada compared to continuous canola. In the study, for each annual

increase in the number of crops between canola cycles, canola yield

increased from 0.20 to 0.36Mgha�1. Likewise, O’Donovan et al. (2014)

suggested that canola yields decreased 9% under continuous canola when

Fig. 3 Yield of (A) maize and (B) soybean when wheat (MSW, maize-soybean-wheat) is
included in the rotation, compared to systems without wheat (MS, maize-soybean,
dotted lines; and monoculture of soybean or corn, dashed lines) grown in the same
experiments. Each symbol represents the overall effect of each treatment in a given
experiment (different colors). Inset boxplot shows the mean benefit of adding wheat
to a maize-soybean (MS) rotation and to maize or soybean monocultures. Asterisks
indicate means significantly different from zero (α¼0.05).
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compared to a canola–spring wheat rotation, also with promising results

when canola followed faba bean, Vicia faba L. In both studies, wheat served

to break canola disease cycles, which boosted canola yields.

3.3 Impact of wheat as an immediate previous crop
In North America, yields of summer crops are often greater following winter

wheat than following another summer crop. For example, Zhang et al.

(1996) found that maize yield was greater following one cycle of winter

wheat and one cycle of a summer crop (either maize or soybean) than fol-

lowing two consecutive years of summer crops. In New York, a 6 years

study by Singer and Cox (1998b) of crop rotations lengthening 2 years

compared maize after either maize, soybeans, or wheat interseeded with

red clover, under both high and low chemical (e.g., herbicide) management

regimes. Maize after wheat had greater yield (by ca. 2Mgha�1) in both

management regimes compared tomaize after maize, or maize after soybean.

In Australia, Hulugalle and Scott (2008) concluded that cotton yields were

greater following wheat or long-fallow than following cotton, sorghum, or

soybean, and that wheat is the preferred crop to rotate with cotton for ca.

70% of cotton producers in the New South Wales region. Canola yields

were not only greater following wheat, but the advantage was evident across

115 observations under low-yielding conditions (Hegewald et al., 2018).

Yield improvements following wheat were the result of small increases in

multiple components of canola yield such as plant population, number seeds

per pod, number of seeds per unit area, and root and shoot biomass.

The benefits of wheat for a subsequent crop are even more pronounced

under water-limited conditions due to benefits on soil water storage (see

Section 5.1). Grain sorghum yields were greater following winter wheat

(+ ca. 1.8Mgha�1) than following grain sorghum over a 20-year study in

semiarid western Kansas, USA, with consistent results over the entire study

period (Schlegel et al., 2017). Later, Schlegel et al. (2019b) reported greater

yields of maize and grain sorghum following winter wheat compared to

another summer crop, and that the most productive systems included grain

sorghum after winter wheat. These yield improvements associated with

greater available water at sowing for the summer crops when following

winter wheat vs when following a previous summer crop. Similarly, a

24-year study in semiarid eastern Colorado, USA, found greater yields

and better yield stability in winter wheat-based rotations that included

one cycle of a summer crop and a long fallow period before planting of
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the subsequent crop, compared to those with two cycles of summer crop

with short or no fallow periods (Nielsen and Vigil, 2018). Long fallow

periods (10–11 months) in these regions are achieved by alternating winter

wheat and summer crops, and can promote soil water recharge in semiarid

environments (see Section 5.1), which benefit the following crop.

3.4 Benefits of wheat for cropping system resilience
and stability

Diversification of simple crop rotations (i.e., one or two crops per rotation)

by addition of wheat can enhance yield stability of the other crops in the

system, in addition to increasing grain yields. For example, Simão et al.

(2023) concluded that soybean in rotation with winter wheat had greater

yield and yield stability compared to continuous soybean over a 44-year

period. This benefit was irrespective of tillage system, and seemed to be

greater in low-yielding environments. In a 36-year experiment in Ontario,

Canada, Janovicek et al. (2021) observed a trend of maize and soybean yield

increase associated with inclusion of wheat in rotations, with the advantage

increasing over time (i.e., with more years in the rotation). In the same study,

maize and soybean yields were greater and less variable when winter wheat

was included in the rotation. In another (31 years) experiment in Ontario,

Gaudin et al. (2015b) used weather and yield data to test whether rotation

diversity was associated with greater yield stability under abnormal weather

conditions and found that diversification of a maize-soybean rotation with

winter wheat increased soybean yields by 13% overall, and yield stability by

16% in dry years.

In semiarid regions, grain sorghum yields were shown to improve over

the years when following winter wheat, whereas yields following grain

sorghum remained stagnant (Schlegel et al., 2018). In a 16-year study in

Pennsylvania, inclusion of a small grain crop such as wheat or oats, Avena

sativa L., and an interseeded legume (red clover, Trifolium pretense L./timo-

thy, Phleum pretense L.) increased maize yields by 12% and improved yield

stability over time compared to continuous maize (Grover et al., 2009).

Furthermore, Congreves et al. (2017) observed that yield variability could

be reduced by including winter wheat in a maize-soybean rotation in both

conventional and no-tillage systems in Ontario, Canada.

3.5 Neutral or negative impacts of wheat on other crops
There are cases reported in literature in which including wheat into the

cropping system did not benefit other crops. For example, an 8 site-year
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study in Ohio, USA, reported that including winter wheat in a maize-

soybean rotation only increased soybean yields in two site-years, with no

significant difference in the other six site-years, while maize yields were

negatively affected in five site-years (Huo et al., 2022). This decrease in

maize yield was attributed to slow crop emergence on wheat residue during

cool, wet soil conditions, and the persistence of inoculum of soilborne

pathogens shared between wheat and maize. Consequently, it is common

for producers in this region to remove and commercialize the wheat residue

(see Sections 7.1 and 8). On the other hand, a study in a similar temperate

environment found that maize yields improved by 1.1Mgha�1 by rotation

with wheat and soybean under conventional tillage (Morrison et al., 2017).

Inconsistent results are likely due to tillage effects, as incorporation of wheat

residues via conventional tillage negated the effects of cold, wet soils.

Furthermore, the limitations associated with heavy wheat residues in cold,

wet soils of temperate environments may not be specific to wheat, but may

arise from any crop that produces high residual biomass.

Wesley et al. (1991) found that soybean had greater yield under mono-

cropping (i.e., full season soybean) than when it was double-cropped in

rotation with winter wheat, although net returns for the rotation were

greater than for monocrop. These results are not surprising, since double-

cropped soybean has lower yield potential than full season soybean due to

later sowing dates (Santos Hansel et al., 2019). The decline in yield with

delayed sowing can range from 0.09% to 1.69% for each day of delay after

the optimal sowing date, varying also with locality and maturity group

(Edreira et al., 2017; Grassini et al., 2015; Salmerón et al., 2016). Late-sown

soybean produces less biomass and fewer seeds due to lower radiation

interception and experience increased risk of freeze events during grain fill

(Egli and Hatfield, 2014; Seifert and Lobell, 2015). High yielding wheat is

usually harvested later than low yielding fields due to a prolonged grain fill

period (e.g., Lollato and Edwards, 2015). Thus, Santos Hansel et al. (2019)

derived a relation suggesting that for each 100kgha�1 increase in wheat

yield, yields of double-cropped soybean would decrease ca. 13kgha�1,

which likely reflects the impact of delayed planting date on soybean yield.

However, the direct impact on soybean yield is not the sole consideration, as

there is extensive evidence demonstrating the economic benefits of diver-

sifying soybean systems to reduce the financial risks associated with reliance

on a single crop (see Section 8).

In other studies conducted in Wisconsin (Lund et al., 1993; Mourtzinis

et al., 2017), NewYork (Singer and Cox, 1998a), and Illinois, USA (Behnke
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et al., 2018), there was no yield effect when wheat was included a maize-

soybean rotation possibly due to lack of water-limitation (see Section 5.1)

and/or colder soil temperatures under the presence of heavy wheat residue

(see Section 3.5). Morrison et al. (2017) did not find any yield benefit when

soybean was rotated with maize and spring wheat in comparison to contin-

uous soybean in a 15-year study inOntario, Canada, but under conventional

tillage maize yielded better under rotation than when planted continuously.

These studies highlight the value of including wheat in diversified crop

rotations to maximize crop yield, especially in maize-soybean rotations

where it is particularly effective. These findings have important implications

for farmers and agricultural policymakers and provide evidence-based

recommendations for sustainable crop rotations.

4. Resource use efficiency

In water-limited rainfed farming systems, crop rotation strategies

require careful consideration of precipitation use efficiency (PUE, i.e., the

crop yield per unit of growing season precipitation), precipitation allocation

(PA, i.e., the precipitation received during the growing season divided by the

total precipitation received during the entire crop rotation cycle), and water

use efficiency (i.e., the amount of C assimilated as biomass or grain per unit of

water uptake by the crop) (Huang et al., 2003; Pala et al., 2007; Peterson et al.,

1993, 1996; Simão et al., 2023). Rotating a cool season crop with a warm-

season crop such as maize, soybean, or grain sorghum, can enhance the

utilization of both summer precipitation and snow accumulation and there-

fore improve the use efficiency of land, water, and radiation usage, and to

cycle nutrients (Nielsen et al., 2011; Patrignani et al., 2019). Crops compatible

for rotation typically partition resource utilization across seasons and exhibit

differences in water demand and rooting depth with adequate periods

between harvest and planting to optimize soil water accumulation, N fixation,

etc. A rotation in which a summer crop follows a winter crop can enhance

land and water use efficiency (Hansen et al., 2012; Nielsen et al., 2002). In

this section we discuss how wheat presents an opportunity to enhance

resource use efficiency.

4.1 Water and precipitation use efficiency
Given its relatively low water demand and high water use efficiency, wheat

may improve the water use efficiency in cropping systems dominated by

summer crops. In North Dakota, Krupinsky et al. (2006) found that spring
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wheat depleted only 5.9cm of soil water. In contrast, sunflower, Helianthus

annuus L., removed 13.1cm, safflower Carthamus tinctorius L., 11.9cm, and

soybean, 9.7cm. Similar results were reported by Black et al. (1981) in

eastern Montana, in North Dakota (Merrill et al., 2007), and in eastern

Colorado (Nielsen, 1997). Likewise, Gan et al. (2009) showed that alter-

nating pulse crops with spring wheat in a semiarid environment improved

water use efficiency in the cropping system due to the greater water use

efficiency of wheat (7.0kgha�1 mm�1) compared to oilseed crops such

as canola, mustard, and flaxseed, Linum usitatissimum L., which averaged

3.6kgha�1 mm�1, or pulse crops such as chickpea, dry pea, Pisum sativum

L., and lentil, Lens culinaris Medik, which averaged 4.0kgha�1 mm�1.

The potential water use efficiency of wheat is 22kgha�1 mm�1 (Lollato

et al., 2017; Sadras and Angus, 2006) which is greater than that of soybean

(9kgha�1 mm�1; Grassini et al., 2015) or sunflower (8kgha�1 mm�1;

Grassini et al., 2009), but lower than that of maize (28 kgha�1 mm�1;

Grassini et al., 2011). These differences in mean and potential water use

efficiency among crops under similar conditions are likely due to differences

in grain composition, in particular as it relates to protein or lipid concen-

trations (Sinclair and de Wit, 1975). Additionally, the relatively high water

use efficiency of wheat in reference to summer crops may be partially

explained by the timing of occurrence of the critical period as it relates to

atmospheric water demand. Couëdel et al. (2021) demonstrated that the

critical periods for yield determination for major US winter wheat growing

regions began in late April–early May, prior to the peak in annual tem-

peratures and solar radiation. In contrast, the critical period for summer

crops such as maize and soybean began in mid-late June and early July,

corresponding with peak solar radiation, temperature, and crop water

demand. Although there is some variation for potential water use efficiency

of wheat around the globe, the timing of the critical period for wheat

prior to peak atmospheric water demand can result in increased water use

efficiency (Sadras and Angus, 2006).

In a temperate arid zone of northwest China, with 150mm average annual

rainfall and under irrigation, Yin et al. (2015) suggested that wheat and maize

relay-planting resulted in greater grain yields than monocropping. In the

study, the combination of wheat straw mulch, relay crop, and reduced tillage

increased soil water content on maize strips to a depth of 110cm. The com-

bination of reduced tillage and rotation of cotton with wheat improved

water use efficiency of cotton under irrigation in a Vertisol soil in Australia

(Tennakoon and Hulugalle, 2006). In Ontario, Canada, Renwick et al.
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(2021) observed that adding a cycle of wheat to a maize-soybean no-tillage

rotation improved the drought tolerance of maize, primarily via effects on

stomatal conductance. The presence of wheat residue can also improve water

use efficiency, which for spring wheat sown under tall wheat residue (>30cm)

was enhanced by 12% as compared to cultivated residue before planting

(Cutforth and McConkey, 1997; see Section 5.1).

Precipitation use efficiency and PA can be used to evaluate dryland

cropping systems under conditions of limited water availability (Patrignani

et al., 2019; Simão et al., 2023).Wheat can increase PUE andPA in a cropping

system partly due to the effects of its residue on soil moisture conservation

(see Section 5.1) but also due to its presence during a time of the year when

the land would otherwise be fallow and precipitation mostly lost to evapo-

ration and drainage. For example, for every 2.5cm of precipitation stored

as soil moisture during fallow after wheat, subsequent yields of grain sorghum

may increase from ca. 385kgha�1 ( Jones and Hauser, 1975) to 430kgha�1

(Baumhardt et al., 1985). Precipitation allocation and PUE in soybean systems

were greater whenwinter wheat was double-cropped after soybean compared

to a soybean-grain sorghum rotation, apparently due to the shorter fallow

period in the former system (i.e., an effect on PA) and soybean yields were

greater in rotation with winter wheat (i.e., effects on PUE) (Simão et al.,

2023). Merrill et al. (2007) observed that spring wheat and chickpea in

North Dakota, USA, were the only crops that used precipitation efficiently

without relying solely on the distribution of growing season precipitation

for seed production, in contrast to maize, buckwheat, Fagopyrum esculentum

M€oench, and sunflower. The authors strongly encouraged the inclusion of

spring wheat in cropping systems to improve their sustainability in the

northern Great Plains of US.

Dryland cropping systems of theUS southern High Plains typically rely on

fallow periods between crops to accumulate precipitation as soil available

water to stabilize and enhance the yields of subsequent crops. A 20-year study

by Schlegel et al. (2017) on the semiarid High Plains of Kansas, USA, found

that water productivity, available water at planting, and soil water accumula-

tion for grain sorghum were all greater during the fallow period after winter

wheat as compared to continuous grain sorghum; available soil water at a

depth of 0–180cm in the soil profile averaged ca. 34mm more at planting

due to off-season accumulation. Grain sorghum yields in this experimentwere

positively related to available soil water at planting, and grain yields were ca.

4Mgha�1 or more when available soil water was greater than 250mm at

180cm depth, with a 40–45% chance of this outcome when grain sorghum
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followed winter wheat. In comparison, continuous grain sorghum had

only a 20% chance of storing >250mm of soil moisture before planting.

Subsequently, Schlegel et al. (2019a) suggested that summer crops (grain

sorghum, maize, and sunflower) had greater available water at planting, and

better crop water productivity, water use, and off-season soil water accu-

mulation when they followed winter wheat vs another summer crop.

4.2 Nutrient use efficiency
Crop rotations can affect nutrient use efficiency directly, influencing nutri-

ent utilization patterns, and indirectly via effects on nutrient pools and

sources (Pierce and Rice, 1988). For example, crop rotations can sometimes

provide most of the nutrients required for a subsequent crop (e.g., in the case

of a N-fixing crop such as alfalfa or when a failed crop leaves residual

fertilizer; Sweeney and Diaz, 2014). At the other extreme, a successful

previous crop can deplete the soil profile, increasing the nutrient response

and use efficiency of a subsequent crop. The yield responses of subsequent

crops due to these rotational effects can thus improve the efficiency of any

fertilizer application (Pierce and Rice, 1988). In this context, a number of

studies have evaluated the effects of wheat on nutrient use efficiency in

various cropping systems.

Including wheat in a maize-soybean rotation can enhance yield stability

and decrease the N required to maximize maize yields, at least partly due

to N rhizodeposition from wheat (i.e., N excretion from living plant roots)

as demonstrated byDeen et al. (2016). Similarly, two long-term experiments

in Canada found increased mineralizable N when wheat was incorporated

into a maize-soybean rotation, compared to a rotation lacking wheat

(Congreves et al., 2015). Furthermore, evidence suggests that significant soil

organic carbon (SOC) increases in response to N fertilization only occur

when wheat was included in a soybean system (Congreves et al., 2017).

This is perhaps likely due to the high C content of wheat residue, which

can range from 36% to 43%, returning as much as 4MgCha�1 to the soil

(Fig. 4). Inclusion of wheat in a rotation can improve N use efficiency in

maize and reduce the need for inorganic N fertilizer (Gaudin et al.,

2015a). Taveira et al. (2020) found that 30% of N recovered in maize grain

was derived from winter wheat and red clover residue, compared to 26%

of soybean residual N.While red clover likely contributed to a large portion

of the short-term N released in this study, wheat aboveground residue can

also contain 10–80kgNha�1 that can be slowly mineralized and made

available on the longer term (Fig. 4). Beyond this direct N return in the
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Fig. 4 Wheat residue amount and composition across (A and B) 174 and a data subset of
(C–H) 149 wheat crops in Kansas. Amount of (A and B) wheat residue, (C and D) carbon
in the wheat residue, and (E) nitrogen in the wheat residue returned to the soil after
wheat harvest as (A and C) function of harvested wheat grain yield. In yield environ-
ments ranging from 1.6 to 4.0Mgha�1, wheat residue returned to soil ranged from
2.4 to 10.1Mgha�1 and carbon returned to soil ranged from 1.0 to 4.1Mgha�1, both
increasing linearly with increases in yield. Percent (F) nitrogen and (G) carbon, and
(H) carbon-to-nitrogen ratio (C:N) in wheat residue. Percent carbon percent in the wheat
residue ranged only in 1.2-fold, whereas the range in nitrogen percent in wheat residue
was 5.6-fold. The range in C:N ratio reflected that of nitrogen percent (i.e., 5.2-fold).
For details about data collection and processing, please refer to Bott et al. (2023).



residue, it is estimated that up to 20% of total N assimilated by wheat can be

deposited in the soil via rhizodeposition ( Janzen, 1990; Wichern et al.,

2008), which is largely attributable to its dense, fibrous root system

(Muñoz-Romero et al., 2013). Janzen (1990) estimated that a wheat

population at 200plantsm�2 released approximately 20kgNha�1 in rhizo-

deposits. Under rainfed conditions in a Vertisol, Muñoz-Romero et al.

(2013) reported wheat N rhizodeposition of 93kgha�1 at a depth of

0–75cm over a 2-year period, which represented 82% of belowground N.

In addition to N rhizodeposition, the dense roots of wheat plants can also

recover leached N, as demonstrated by Hulugalle (2005) in an irrigated

Vertisol in Australia, where N leached out of the root zone of cotton was sub-

sequently recovered by wheat at 60cm soil depth. In a 15-year study in

Illinois, Zuber et al. (2015) observed greater total N at 60cm soil depth in

a 3-year maize-soybean-wheat rotation compared to a 2-year maize-soybean

rotation or continuous soybean, with intermediate values for continuous

maize, due to greaterN inputs inmaize-soybean-wheat and continuousmaize

compared to the maize-soybean systems. Additionally, the study revealed

higher soil potassium levels for the 3-year rotation compared to the 2-year

rotation (343 vs 325Mgha�1, respectively) due to greater potassium uptake

by soybean compared to wheat. Similarly, soil extractable potassium, poten-

tially mineralizable N, and total N were all greater with the inclusion of

wheat in soybean systems because of the greater C input of wheat, which

serves to accelerate microbial activity (Agomoh et al., 2020). Increased potas-

sium use efficiency and potassium recycling also has been observed in

cropping system where maize and soybean were rotated with small grains,

including wheat (Ambrosini et al., 2022).

Wheat offers an opportunity for improved phosphorus (P) fertilization

efficiency of the entire crop rotation. The wheat phase of a rotation can

be used to meet the P requirements of the entire cropping system, especially

in no-tillage systems where P—an immobile nutrient—cannot be incorpo-

rated into the soil. Supplying P needs during the wheat phase can take advan-

tage of the narrower row spacing of wheat drills (typically 10–25cm)

compared to a row crop planter (typically 45–90cm), to distribute P more

evenly across the area. Furthermore, wheat has a higher critical soil test P level

compared to crops such as maize and soybean, indicating that wheat is more

responsive to P fertilization and makes more efficient use of the applied

fertilizer (Sucunza et al., 2018). Wheat can tolerate high rates of P that

can be safely applied in-furrow during sowing without harming the crop

(Heard et al., 2014), at rates as high as 135kgP2O5 ha
�1 as dry fertilizer
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(Weber, 2021), which is sufficient for at least two or more subsequent crops.

Therefore, wheat allows for application of surplus P that can later be used by

following crops, whereas crops like maize and soybean are more sensitive to P

at planting and may require broadcast application of high P2O5 rates to avoid

seed damage (Freiling et al., 2022; Randall and Hoeft, 1988). From an envi-

ronmental perspective, injection of P fertilizer in the soil reduces the risk of

runoff and water pollution (Smith et al., 2016) and application of P to winter

wheat in the fall benefits from lower rainfall, which further reduces losses to

runoff (Liu et al., 2022). Finally, wheat also offers opportunities to improve P

management in highly weathered Oxisols. Here, some of the mechanisms

may include the release of protons by wheat, increasing phosphate acquisition

under low availability conditions (Wang et al., 2008). Additionally, wheat

absorbs greater amounts of soil available P than other species such as chickpea,

canola, cotton, and white lupin, Lupinus albus L. (Vu et al., 2010; Wang et al.,

2008), due a larger root system that allows it to explore greater soil volume.

This helps tomaintain the P in a biologically available form, preventing it from

binding to highly available Fe and Al (Tiecher et al., 2015).

5. Wheat residue management for agronomic
and ecological benefits

Wheat produces a significant amount of residue with a high C:N ratio,

covering the soil and providing various agronomic and ecological benefits

(summarized and compared among residue management programs in

Fig. 5). Wheat residue intercepts a portion of incident solar radiation, low-

ering soil temperature and reducing evaporative losses. Reduced soil

temperature can slow germination of weed seeds and provide a physical

barrier that impedes weed emergence, while protecting soil structure from

the direct impact of rain drops, thus diminishing runoff and erosion, whether

by water or wind. These benefits are reviewed in the next sections.

5.1 Residue for soil water conservation
Motazedian et al. (2019) studied the effects of wheat residue on sweet maize

yield under moisture limitation (50%, 70%, and 100% of water requirement).

They concluded that wheat residue improved yield in maize under water

stress. This may be partially explained by reduced soil water evaporation,

which wheat residue can lower by 4–25% compared to bare soil as biomass

increases from 2.5 to 10tha�1 (Gava et al., 2013). The effectiveness of wheat

residue on soil water conservation is a product of the number of stems m�2,
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Fig. 5 Schematic representation of wheat residue management implications for soil,
wind and water erosion control, soil temperature, soil water infiltration, snow trapping,
herbicide spray deposition, and weed incidence with (A) standing wheat residue, (B) flat
wheat residue, and (C) no wheat residue.
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stem diameter, and stem height (Fryrear and Bilbro, 1994; McMaster et al.,

2000). Thus, wheat residue management should focus on maximizing the

number of stems m�2, achieved either via plant population or tillering

(Bastos et al., 2020), and residue stem height post-harvest, since wheat stems

are intrinsically slender. Wheat varieties also differ in stem composition, most

varieties being hollow-stemmed, but some solid stemmed, although this seems

not to affect long-term residue persistence in the field or subsequent maize

yields (Simão et al., 2021). Depending on the harvest method and cutting

height, wheat straw residue can be either standing (i.e., stubble oriented ver-

tically) or flat (i.e., stubble oriented horizontally on the soil surface). Standing

wheat stubble fosters better water infiltration than maize stubble (Govaerts

et al., 2007). Therefore, both the amount and orientation of wheat residue

are important management considerations.

Standing vs flat residues differ in the degree to which they shade the soil

surface from solar radiation, and thus in rates of energy exchange with the

atmosphere (Bristow, 1988; Horton et al., 1996), with implications for the

dynamics of soil water evaporation, soil temperature, and wind interactions

with the soil surface (Fig. 5A and B; Fryrear and Bilbro, 1994; Van de Ven

et al., 1989; Woodruff et al., 1972).

For example, McMaster et al. (2000) reported that taller wheat stubble

and higher plant populations reduced soil absorption of solar radiation

and evaporation. Smika (1983) found that increasing wheat stubble height

from 30 to 61cm reduced wind speed at the soil surface by 74% and

Caprio et al. (1985) showed that soil water evaporation was reduced up

to 60% by standing wheat residue, although the reduction was environment-

specific. Standing crop residue may allow for greater soil water loss than

flat residue in tropical environments due to greater penetration of solar

radiation to the soil surface, leading to higher heat transfer and evaporation

(Bristow, 1988). In such cases, the greater surface area shaded by flat residue

minimizes soil temperature fluctuations and reduces soil water loss (Horton

et al., 1996). However, in temperate environments with less solar radiation,

standing residue may provide greater benefits by virtue of better soil

insolation (Bristow, 1988). Higher soil temperature can be beneficial in

temperate no-tillage systems where low soil temperatures can delay germi-

nation and affect stand establishment (Pittelkow et al., 2015; Unger and

Stewart, 1976). Black and Siddoway (1977) reported that wheat stubble

cut to a height of 28 or 38cm increased soil water content by 37% and 46%,

respectively, at 0–60cm depth compared to bare soil. In the semi-arid Great

Plains of the US, Schlegel et al. (2023) reported a yield increase of ca. 10%
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and 5% for maize and grain sorghum, respectively, when these crops were

planted into tall winter wheat stubble (43 and 64cm) compared to short stubble

(20cm), attributing the yield increase to enhanced water use efficiency in taller

stubble. However, no differences in fallow water accumulation, water use, or

fallow precipitation efficiency were observed, suggesting that the advantage of

taller stubble residue extends beyond off-season water storage. For example, in

the semi-arid Canadian prairie, Cutforth et al. (2002) observed pronounced

microclimatic differences near the soil surface between tall (25–36cm) and short

(15–18cm) wheat stubble, with subsequent pulse crops exhibiting increased

water use efficiency and better overall yields in taller stubble.

Plant population (i.e., number of stems m�2), wheat stubble height, and

row spacing can have variable effects on soil moisture across environments.

In east central Washington, USA, Schillinger and Wuest (2021) observed

that medium wheat stubble height (25cm) conserved more soil water at

the end of the fallow period (14 vs 8mm, respectively) than tall stubble

(75cm) at 0- to 180-cm soil depth. Tall stubble permitted more soil water

loss due to higher levels of solar radiation reaching the soil surface. In con-

trast, in the southern Great Plains of Texas, USA, tall wheat stubble (60cm)

resulted in 12% less irradiant energy at the soil surface, and 26% less water

loss compared to medium height stubble (40cm), although soil water con-

tent was not directly measured (Baumhardt et al., 2002). Seeding rate and

row spacing differed between these studies: Baumhardt et al. (2002) used

40kg seedha�1 and 30cm row spacing compared to 55kg seedha�1 and

40cm row spacing used by Schillinger and Wuest (2021). The contrasting

results might be partially explained by greater residue height and narrower

row spacing compensating for lower stem density in the former study. In

another study in the semi-arid US Great Plains, soil water evaporation

was reduced from 20% to 50% as wheat stubble height increased from

10 to 50cm, the advantage becoming more apparent at higher plant

populations (McMaster et al., 2000).

Soil water recharge fromwinter precipitation (liquid and snow) is impor-

tant for subsequent crops in dry temperate environments (Grassini et al.,

2010), and standing wheat stubble has a greater capacity to trap snow than

flat stubble (Fig. 6; Black and Siddoway, 1977; Hoefer et al., 1981; Nielsen,

1998). Maximum snow retention capacity is impacted by stalk height,

diameter, and soil surface area occupied by stalk (Tabler and Smith,

1986); consequently, due to its density (stems per area), wheat straw has

greater snow-catching capacity than that of sunflower, maize, canola, buck-

wheat, millet, Panicum miliaceum L., or sorghum (Merrill et al., 2007).Wheat
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residue stubble that is 15–19cm, or 30–35cm, can accumulate two and four

times more snow, respectively, than bare soil (Aase and Siddoway, 1980).

Over 10 winters in Saskatchewan, Canada, Campbell et al. (1992) measured

about 1.6 times more snow in wheat residue that was 40–61cm tall as com-

pared to 15–20cm tall. Ries and Power (1981) suggested that for each

25.4mm increase in stubble height, overwinter water storage increased in

6mm due to greater snow trapping in North Dakota, USA. Although

Black and Siddoway (1977) observed similar amounts of snow trapped by

28 and 38cm stubbles, both trapped more than bare soil. Likewise,

Caprio (1986) suggested that wheat stubble of 30cm height was 30% more

effective in harvesting snow than bare soil in Montana, USA. Standing

wheat stubble trapped more snow than flat stubble in a winter wheat-

maize-fallow crop rotation, which translated into greater soil moisture

and subsequent maize yield (Hoefer et al., 1981). The capacity of wheat

straw to retain snow during winter fallow seems to be independent of wheat

variety straw strength, as long as the straw remains standing through the

winter (Simão et al., 2021).

5.2 Residue for soil erosion control
Standing winter wheat residues are more effective in protecting soil from

wind erosion compared to residues of cotton, forage sorghum, oilseed rape,

Brassica rapa L., silage corn, soybeans, or sunflower (Lyles and Allison, 1981).

Fig. 6 Snow trapping potential of different winter wheat residue architectures. (A) Flat
wheat residue, which results from harvesting the wheat crop using a conventional
combine header with low or medium height positioning, has lower potential to retain
snow than (B) standing wheat residue, which results either from harvesting the wheat
crop using a stripper combine header or from harvesting it using a conventional header
with high height positioning. Photos from nearby fallow fields taken in March 2004 near
Akron, Colorado, USA. Photo credit and approval for publication: Dr. David Nielsen.
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Standing wheat stubble provides 6- to 9-fold better protection from wind-

erosion than standing sorghum or maize stubble, due to its greater stem

density (Lyles and Allison, 1976). Some evidence suggests that �110 stand-

ing wheat stems m�1 can reduce soil loss due to wind erosion by ca. 73%

(Pi et al., 2020). Wheat stubble 15–19cm tall can reduce wind passage

1.5-fold compared to bare soil at 9cm above ground level, whereas stubble

30–35cm tall can reduce it five-fold (Aase and Siddoway, 1980). The greater

effectiveness of standing wheat residue to control wind erosion than flat

residue results from its greater absorption of the wind’s energy, raising the

zero-velocity-point above the soil (Bilbro and Fryrear, 1994; Siddoway

et al., 1965). Therefore, wheat residue height, density, and orientation

are all factors affecting soil loss by wind erosion during fallow periods

(Fig. 5).

The use of wheat residue as a mulch can also reduce soil erosion, runoff,

and sediment concentration, while simultaneously increasing water infi-

ltration and delaying runoff (Kavian et al., 2018; Lollato et al., 2012). In a

sandy soil with a slope of 7.5%, wheat residue provided better soil coverage

compared to soybean residue when an equivalent amount of biomass was

present, and wheat residue was better at mitigating water erosion given

an equivalent amount of soil coverage (Lopes et al., 1987). In a clayey

Oxisol in a subtropical environment, wheat residue precluded soil erosion

from high intensity rainfall events as compared to a tilled area within the

same field (Fig. 7; Lollato et al., 2012). Wheat residue has also mitigated

water erosion better than corn residue, given similar amounts of residue

on the soil surface (Cogo, 1981; Laflen et al., 1981; Lopes et al., 1987;

Wischmeier andMeyer, 1973). Rahma et al. (2019) observed effective water

erosion control with as much as 4 tha�1 wheat straw over a wide range of

slopes (from 8.7% to 46.6%), rainfall simulator events (60–180mmh�1), and

soil types (silt loam, clay loam, loam). Wheat crops can produce as much as

�10 tha�1 of residue (Fig. 4), offering an unparallel opportunity for erosion

control as it increases in parallel with wheat residue (Rahma et al., 2019).

Overall, wheat stubble height of 25–45cm provides a similar degree

of soil moisture conservation (Black and Siddoway, 1977; Cutforth and

McConkey, 1997; Schillinger andWuest, 2021; Schlegel et al., 2023), wind

erosion control (Fryrear and Bilbro, 1994), snow trapping (Aase and

Siddoway, 1980; Black and Siddoway, 1977), and herbicide spray deposition

on the soil (Simão et al., 2020) when compared to stubble heights >45cm.

Although standing wheat residue is beneficial in temperate environments

due to better snow trapping and increased solar irradiation of the soil surface,
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flat residues may be more beneficial in tropical environments because they

keep soil temperatures cooler while reducing evaporation. Whereas detailed

wheat residue management recommendations could be tailored to specific

agronomic contexts (e.g., standing vs flat, tall vs short), the mere presence of

any wheat residue provides numerous agronomic and ecosystem benefits

relative to bare soil.

5.3 Residue for weed control
Wheat can aid weed management through diversification of crop rotations

and via physical (residue barrier and shading) and chemical (allelopathic)

Fig. 7 Soil erosion prevention due to wheat residue in an Oxisol in a commercial farm-
ing operation in the subtropical climate of southern Brazil. (A) Distance photo of a small
area where the soil was tilled to correct soil ruts from combine harvesting as compared
to the remaining operation under no-till with large amounts of wheat residue in the soil
surface. (B) Detailed photo of severe soil erosion resulting from a 100mmh�1 rainfall
event in the tilled area. (C) Detailed photo of an area neighboring to the photo in
(B), showing no apparent soil erosion due to the surface wheat residue. The slope in
this commercial operation ranged from null to 19% and averaged 7.5%. Photos taken
in September 2007 near Tamarana, Parana, Brazil. For more details, please refer to
Lollato et al. (2012). Photo credit and approval for publication: Dr. Romulo Lollato.
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effects of the wheat residue on weed germination, growth and development,

with the potential to reduce weed density and biomass in various cropping

systems.

The inclusion of winter cereals in systems dominated by spring-annual

rotations can reduce weed density and the system’s herbicide requirements

(Beres et al., 2010b). This is especially true in seasons when winter cereals

have a good canopy development during the fall, well prior to the emer-

gence of spring weeds, resulting in a greater competitive ability in the spring

(Beres et al., 2010b). The competitive ability of the crop against weeds can

be enhanced by in-season decisions that modify wheat’s canopy architecture

(e.g., cultivar selection and seeding rates), reducing the need for spring

herbicide applications and production of weed seed for establishment in sub-

sequent crops (Beres et al., 2010a; Blackshaw, 1994; Thomas et al., 1993).

For example, Li et al. (2019b) concluded that including spring wheat as

a break crop in continuous chickpea, or a chickpea-mustard-chickpea

rotation, reduced weed density and biomass in the system. Here, wheat

demonstrated both a better competitiveness and stronger allelopathic effects

against weeds as compared to chickpea.

Seedbank densities of smooth pigweed (Amaranthus hybridus L.), com-

mon lambsquarters (Chenopodium album L.), and annual ryegrass (Lolium

rigidum L.) were lower after a wheat crop in a 3-year maize-soybean-wheat

rotation than after soybean in a 2-year maize-soybean rotation (Teasdale

et al., 2004). Whereas optimal weed management in continuous maize or

in a maize-soybean rotation typically requires maximum herbicide rates,

reduced herbicide rates (still within the recommended label rates) may afford

a similar level of weed control in a maize-soybean-wheat rotation (Martin

et al., 1991). For example, Schreiber (1992) observed reduced stands of

giant foxtail (Setaria faberi L.) in a maize-soybean-wheat rotation compared

to a maize-soybean rotation, regardless of tillage system. This effect that

was attributed to the allelopathic effects of wheat straw as well as the physical

barrier and shading provided by the residue. These results indicate that the

inclusion of wheat in crop rotations can be an effective weed management

tactic with the potential to reduce herbicide use and lower production costs.

Wheat residues left in the field post-harvest can reduce weed pressure due

to effects on soil temperature and shading that, in turn, reduce both the ger-

mination of weed seeds and their subsequent growth rate (Crutchfield et al.,

1986; Dhanda et al., 2023; Mahajan et al., 2018). In-season crop management

decisions (e.g., population, row spacing, variety, etc.) can modulate residue

production (Roth et al., 2021), consequently impacting weed management
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for subsequent crops. Other mulches may provide similar physical effects, but

the high C:N ratio of wheat residue (average: 60; range: 24–126; Fig. 4),
coupled with large amount of biomass returned to the soil, can prolong these

benefits in comparison to residues of other crops with lower C:N ratios, as the

amount of residue seems to directly affect weed density and biomass

(Crutchfield et al., 1986).

Wheat residues can reduce weed emergence, weed density, and weed

yield due to allelopathic chemical effects (Elliott et al., 1978), toxic microbial

products (Aslam et al., 2017; Jilani et al., 2008; Zuo et al., 2014), and pH

changes in the soil (Kimber, 1973). Compared to other crops, wheat has

a high potential for allelopathic weed control (Farooq et al., 2020;

Table 1). Allelopathy comprises biochemical interactions between living

organisms, including plants and bacteria, that can provide an eco-friendly

form of weed control. Aslam et al. (2017) reported that wheat plants and

decomposing residues release a variety of chemicals, including hydroxamic

and phenolic acids, and short-chain fatty acids, which have allelopathic

activity, providing allelopathic wheat cultivars with natural weed control

potential. Allelopathy from wheat residues varies among wheat cultivars

(Bott et al., 2023; Guenzi and McCalla, 1966; Kimber, 1967; Prasanta

et al., 2003; Wu et al., 2003) and among plant parts, such as between root

and shoot (Villagrasa et al., 2006) and in the rhizosphere (Khaliq et al., 2011).

Aerial components of the wheat plant exhibit the highest allelopathic

activity, followed by the whole plant (roots plus shoots), and then roots

(Zuo et al., 2005). In wheat seedlings, allelochemicals predominate in the

roots, although weed suppression appears most effective during vegetative

and post-harvest phases (Wu et al., 2000a).

Significant correlations have been found between the allelopathic

activity of wheat and soil microbial communities (Zuo et al., 2014).

Analysis of soil microbial C and N indicate that wheat creates a micro-

habitat where microbes thrive, with elevated levels of key soil enzymes

such as urease, catalase, sucrase, and dehydrogenase. Thus, cultivation of

allelopathic wheat varieties can be an effective tool for environmentally

sustainable weed management in cropping systems (Bott et al., 2023;

Jabran et al., 2015).

Despite the physical and chemical benefits for weed control, wheat

residue can reduce herbicide spray deposition on emerging weeds below

the residue and on the soil surface as compared to bare soil or to shorter

residues, with spray deposition diminishing as a linear function of increas-

ing stubble height (Crutchfield et al., 1986; Simão et al., 2020). Standing
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wheat straw may retain up to 60% of the applied herbicide (Ghadiri et al.,

1984; Wicks et al., 1994). Simão et al. (2020) observed that post-

emergence herbicide spray deposition on the soil decreased by 47% and

33% in the presence of tall (71 cm) and medium (36cm) wheat stubble,

respectively, compared to a bare soil control. Standing wheat stubble

reduced post-emergence herbicide deposition by 52% on smooth pigweed

(A. hybridus L.) when sprayer travel speed was 16kmh�1, although

Table 1 List of weed species exhibiting decreased seed germination following wheat
plant extract application.

Scientific name Common name
Extract
concentration References

Abutilon theophrasti

Medic.

Velvetleaf 5% Steinsiek et al. (1982)

Amaranthus palmeri Palmer amaranth 5% Bott et al. (2023)

Amaranthus

retroflexus L.

Redroot pigweed 10% Blum et al. (2002);

Flood and Entz (2009)

Cassia obtusifolia L. Sicklepod 5% Steinsiek et al. (1982)

Digitaria ciliaris (Retz.)

Koeler

Southern crabgrass 10% Li et al. (2019a)

Echinochloa crus-galli

var. frumetaceae

(Roxb.)

Japanese barnyard

millet

5% Steinsiek et al. (1982)

Echinochloa crus-galli Barnyard grass 5% Steinsiek et al. (1982)

Ipomoea hederacea (L.)

Jacq

Ivy-leaf Morning

glory

5% and 10% Steinsiek et al. (1982);

Blum et al. (2002)

Ipomoea lacunosa (L.) Omitted-morning

glory

5% Steinsiek et al. (1982)

Lolium perenne L. Perennial ryegrass 50%, 25%,

and 12.5%

Al Hamdi et al. (2001)

Lolium rigidum Gaud Annual ryegrass 10% Wu et al. (2000b)

Sesbania exaltata (Raf.)

Cory

Hemp sesbania 5% Steinsiek et al. (1982)

Setaria faberi L. Giant foxtail 5% Bott et al. (2023)

Setaria viridis L. Green foxtail 10% Flood and Entz (2009)

Sida spinosa Prickly sida 10% Blum et al. (2002)
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deposition was enhanced by 14% when travel speed was reduced to

8kmh�1 (Wolf et al., 2000). Less than 43% of pre-emergence herbicide

reached the soil surface when 2250kgha�1 of flat wheat residue was pre-

sent (Banks and Robinson, 1982). When targeting the soil surface, both

standing and flat residue orientations can intercept similar amounts of her-

bicide. However, if the target is the weed canopy, flat residue is prefer-

able. Despite interception of some spray droplets by wheat stubble, Black

and Siddoway (1977) found that green foxtail (Setaria viridis L.) growth

was reduced with increasing wheat stubble height, and found 50% more

water at 0–60cm soil depth in taller stubble due to weed suppression.

Thus, the disadvantages of standing compared to flat residue for herbicide

spray deposition depend on the application target and may be offset by

lower weed biomass accumulation.

5.4 Residue benefits for faunal diversity
Many wildlife species use wheat residue and it can have a positive impact on

bird populations by providing both food and nesting habitat, potentially

supporting bird populations (Duebbert and Kantrud, 1987; Lokemoen

and Beiser, 1997; Rodgers, 1983). Wheat stubble may offer better nesting

cover for some species than other vegetation types such as alfalfa or mixed

grasses (Higgins, 1975; Snyder, 1984). Observations suggest that wheat may

support greater bird populations than rice, and that various bird guilds

favor different crop phenological stages that provide different habitat types

(Kler and Parshad, 2011). For example, ring-necked pheasant (Phasianus

colchicus), the most important upland fame bird in parts of North America,

can successfully nest and reproduce in wheat residue that is not tilled

(Linder et al., 1960; Snyder, 1984, 1991). Likewise, various species of

dabbling ducks nest in fields of no-tillage winter wheat in the prairie pothole

region of North Dakota, USA, with nest density averaging 6–8 nests per

100hectares (Duebbert and Kantrud, 1987). Nest failures, in this case, seem

to be primarily caused by mammalian predation, and no evidence suggested

pesticide-related mortality. Although concerns exist about pesticide residues

in wheat stubble, one recent study found that canary bird species preferred

to feed from grain of conventionally-grown wheat stubble compared to

organic stubble, likely due to higher protein content in the grain from

the former (McKenzie and Whittingham, 2010). In addition to providing

nesting habitat, wheat residue also supports insect populations which are

an important food source for insectivorous birds that, in turn, often prey

on insect pests in crop fields (Borad and Parasharya, 2018).
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6. Soil

It can take up to 18 months for 80% of wheat residue to bemineralized

in the field, and our data shown in Fig. 4 supports previous findings that

C returned to the soil can average 5.4Mgha�1 year�1 for ca. 11Mgha�1

of residue (Buyanovsky and Wagner, 1987). Wheat can improve SOC

levels, due in part to the high lignin content of wheat residues, which

decompose slower than those of maize or soybean, and play a crucial role

in SOC accumulation (Broder and Wagner, 1988). A high C:N ratio of

ca. 82 (though with a large variability driven by plant nitrogen status;

Fig. 4) contributes to the slow decomposition rate of wheat residue

(Truong and Marschner, 2019), which has a half-life that exceeds 100 days

(Wenneck et al., 2022). Wheat is thus an appealing choice for soil mulching

and improvement of SOC. Although continuous wheat had no significant

impact on SOC levels in a recent meta-analysis (King and Blesh, 2018), there

was an increase in SOC when wheat was rotated with higher-biomass crops

like maize. The context-specific effects of wheat on soil parameters are

explored in this section.

6.1 Soil physical and chemical properties
Soil organic carbon has been widely accepted as a robust soil health indicator

(Allen et al., 2011) and often shows a positive linear relationship with cereal

crop yields (Oldfield et al., 2019) and crop yield stability (Congreves et al.,

2017; Gaudin et al., 2015b). A 15-year study in Illinois, USA, compared

soil properties of continuous maize, continuous soybean, a 2-year maize-

soybean rotation, and a 3-year maize-soybean-wheat rotation and found

that the 3-year rotation including wheat resulted in the greatest water

aggregate stability (0.87kgkg�1), whereas continuous soybean and the

maize-soybean rotation had the lowest (0.79 and 0.82kgkg�1, respectively).

In this study, soil water aggregate stability was positively correlated with

SOC. An 11-year study of rotation and fertility on clay loam soil in

Ontario, Canada, found that adding wheat to a maize-soybean rotation

resulted in greater SOC and total N in the top 20cm of soil (Congreves

et al., 2017). Another long-term study conducted in western Canada con-

cluded that rotations including winter wheat stabilized soil organic matter,

whereas rotations including legumes led to a loss of SOC in dry years

(Campbell and Zentner, 1993). In a 27-year study in eastern Kansas,

USA, cropping systems containing winter wheat (i.e., continuous winter
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wheat or a soybean-winter wheat rotation) resulted in higher levels of

total soil C and N than continuous soybean or grain sorghum, or a 2-year

soybean-grain sorghum rotation (Doyle et al., 2004). Later, in the same

experiment, Fabrizzi et al. (2007) found that after 29 years, the highest

amount of soil organic matter at a 0–30cm depth was associated with a high

frequency of winter wheat in the rotation. According to Prior et al. (2005), a

soybean-sorghum rotation that includes wheat under no-tillage has a higher

potential for C sequestration and soil storage compared to a 2-year soybean-

sorghum rotation under conventional tillage practices. SOC fractions in

cotton systems, in particular lighter fractions, are higher when rotated with

wheat rather than legumes (Conteh et al., 1998).

Other indicators of soil health include physical (e.g., soil structure,

porosity, infiltration, and water holding capacity), chemical (acidity, electri-

cal conductivity, and plant nutrient content), and biological parameters (e.g.,

microbial biomass and diversity) (Allen et al., 2011). Congreves et al. (2015)

evaluated 15 soil health parameters across four long-term experiments lasting

between 14 and 29 years in Ontario, Canada and found that crop sequences

including wheat had the highest scores for soil health and aggregate stability

based on the Ontario Soil Health Assessment score, whereas rotations

featuring solely maize and soybean had the lowest scores, results that were

later confirmed by Wepruk et al. (2022) in the same field. In two studies

spanning 19- and 23-year periods, Van Eerd et al. (2014) demonstrated that

indices of soil quality at 0–15cm depth (i.e., total N, SOC, aggregate stabil-

ity, and penetrometer resistance) increased with frequency of winter wheat

in the rotation, consistent with the findings of Andrews et al. (2004). In a

15-year study in Illinois, Zuber et al. (2015) found that a maize-soybean-

wheat rotation resulted in greater soil water aggregate stability compared

to a maize-soybean rotation or continuous soybean, as more soil compaction

(i.e., higher soil bulk density) occurred under continuous soybean, andmore

soil acidity resulted under continuous maize, likely due to high N fertiliza-

tion. Lower soil compaction, as indicated by decreased soil bulk density,

was also observed when one cycle of wheat was added in the final year of

a double maize-soybean rotation in a no-tillage system (Renwick et al.,

2021). These authors also observed a correlation between SOC and reduced

water stress in maize plants, suggesting that introducing small grain cereals

or cover crops into maize-soybean rotation could enhance maize yield

and increase its drought tolerance. Only 0.7Mgha�1 wheat residue signif-

icantly increased rain infiltration compared to bare soil in ridged, tilled soils

(Baumhardt and Lascano, 1996). Furthermore, Agomoh et al. (2020) reported
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that water extractable organic C, total C, and particulate organic matter

increased in rotations that included a higher frequency of wheat. In cotton

systems, wheat helped to mitigate compaction of a Vertisol in Queensland,

Australia, compared to legumes (Hulugalle and Scott, 2008).

6.2 Soil microorganisms
Maize-based rotations under reduced tillage in a sandy loam soil in

Michigan, USA, had the greatest mega-aggregate stability when they

included wheat, which was correlated with SOC, total N, and fungal abun-

dance (Tiemann et al., 2015). Similarly, Tomlin et al. (1995) reported

greater abundance of soil fauna and microflora when wheat was included

in a maize-soybean rotation. Quantity of soil bacteria were 1.4 times greater

when winter wheat interseeded with red clover was included in a maize-

soybean rotation, although microbial pathways leading to N2O production,

ammonia oxidization, and denitrification were also greater, likely due to

greater soil microbial activity under the more diverse rotation (Linton

et al., 2020). Studies of 21- and 36-year periods in Ontario, Canada, found

greater soil microbial activity and SOC (that was linearly correlated with

yield) at 0–15cm depth in maize and soybean rotations that included

winter wheat, the difference being more apparent when winter wheat

was interseeded with red clover (Chahal et al., 2021).

6.3 Soil carbon sequestration and greenhouse gases emission
Both current and previous crops must be considered when estimating

greenhouse gas (GHG) emissions from agricultural fields. For instance, con-

tinuous maize produces three to five times greater annual N2O emissions

(2.6kgNha�1) than continuous soybean (0.8kgNha�1) or winter wheat

(0.5kgNha�1) (Drury et al., 2008). When maize followed maize, N2O

emissions were 60% higher than when maize followed winter wheat

(2.6 vs 1.6kgNha�1; Drury et al., 2008). Crop type may have a greater

impact on CO2 emissions than the cropping system itself ( Johnson et al.,

2010). For example, spring wheat can emit less CO2 per unit of grain pro-

duced (0.46kgCO2 kg
�1 grain) compared to canola (0.80kgCO2 kg

�1

grain), mustard, or flaxseed (0.59kgCO2 kg
�1 grain), but more than

chickpea, dry pea, or lentil (0.20–0.33kgCO2 kg
�1 grain) (Gan et al., 2011).

Wheat may even act as a C sink in certain cropping systems; a net

ecosystem exchange of �347gCm�2, similar to that of tallgrass prairie
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(Bajgain et al., 2018), and lower than that of soybeans (Veeck et al., 2022)

or canola (Wagle et al., 2019). Wagle et al. (2019) found that wheat had a

larger C sink potential than canola due to its better adaptation to high tem-

perature and vapor pressure deficits, resulting in more efficient water and

solar radiation use for C accumulation. Furthermore, a study in eastern

Canada found that N2O emissions from wheat did not differ from soybean

and alfalfa, although the source of N differed among crops (synthetic N vs

biological fixing-N) (Meyer-Aurich et al., 2006b).

The potential of a cropping system to sequester C and mitigate GHG

emissions depends on the crop, the environment, and management, but

wheat can serve as a C sink. For example, Gan et al. (2011) concluded that

spring wheat can act as a sink of CO2 (ca. 0.03–0.4kgCO2 eq. kg
�1 grain)

on the semiarid Canadian prairies when associated with a decreased summer-

fallow period, an improved N fertilization regime, and inclusion of a legume

crop in the rotation. Afterwards, Gan et al. (2014) reported that dryland spring

wheat production sequestered carbon on average ranging from �29 to

�634kgCO2 eq. ha
�1 year�1, depending on cropping system.Winter wheat

served as a C sink during the growing season (�370gCm�2 removal) in the

US southern Great Plains, regardless of whether it was grown for grain only,

graze only, or dual-purpose, although grain-only removed themost C (Wagle

et al., 2021). Likewise, Wang et al. (2022) suggested that the changes in soil

organic carbon stock measured before wheat sowing and after harvest ranged

from �187 to 780kgha�1 under chisel ploughing and zero tillage in China.

Even with 50% wheat straw removal under conventional tillage, a single

wheat cycle in a 4-year maize-maize-soybean-soybean rotation sequestered

more SOC (23.9 vs 21.4gkgsoil�1) and total yearly C inputs (3190 vs

3002kgCha�1 year�1) than a maize-maize-soybean-soybean rotation in a

37-year study in Elora, Canada, with more pronounced benefits when wheat

was interseeded with red clover (King et al., 2020; Meyer-Aurich et al.,

2006b). In the North China Plain, He et al. (2022) reported that the

change in soil organic carbon storage in the 0–30cm soil layer ranged

from�2.15 to 3.30Mgha�1 after one season of wheat cultivation, depending

on tillage practices and residue management. Gan et al. (2011) estimated

that an increase of 10% N use efficiency in wheat, would reduce the C

footprint of wheat by 7%, and by 13% if P-solubilizing and arbuscular

mycorrhizal fungi were applied. In a 12-year study in China, a maize plus

wheat relay system had a 17.3% lower C footprint compared to monocrop

maize (4022 vs 4747kgCO2 eq. ha
–1 season–1), and increased net economic

return by 39.2% (Chai et al., 2021). However, no differences in GHG
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emissions were detected between a maize-soybean rotation vs a maize-

soybean-wheat rotation in a study in Illinois, USA (Behnke et al., 2018).

Wheat can produce more biomass with less N compared to maize, which

should contribute to the accrual of carbon and low GHG emissions.

Although wheat carbon accrual averages 17% less than maize due to lower

biomass production (King and Blesh, 2018), its lower N requirement may

still help mitigate climate change due to lower N2O emission during the

wheat growing season (Bronson and Mosier, 1993). Irrigated maize had

greater N2O emissions and less CH4 fixation than either dryland or irrigated

winter wheat in northeast Colorado, USA, regardless of N management

(Bronson and Mosier, 1993). In a no-tillage dryland system on sandy clay

loam soil in eastern South Dakota, USA, Lehman andOsborne (2013) found

that a 4-year maize-field peas-winter wheat–soybean rotation acted as a C

sink, whereas a 2-year rotation of maize-soybean was a source of green-

houses gases. In this study, the 4-year rotation accrued 596kgCha�1 year�1

in the top 30cm of soil, while the 2-year rotation lost 120kgCha�1 year�1.

Later in the same study, Lehman et al. (2017) observed that daily N2O

emissions were 24% lower in the 4-year rotation than in the 2-year rotation

(2.3 vs 3.0gN2Oha�1 day�1). The fibrous root structure of wheat, com-

bined with the lower C:N ratio of field pea residue, may have contributed

to SOC sequestration at greater depths in the 4-year rotation (Buyanovsky

and Wagner, 1987).

In Australia, rotations including wheat, have improved cotton yield,

mitigated the declining of soil quality, reduced emissions of CO2 eq. per unit

area, and lowered CO2 eq. emissions per unit of cotton yield (Hulugalle

et al., 2012). Modeling data from 2016 to 2100 in the context of climate

change, predictions revealed that maize yield and SOC would increase in

a maize-soybean rotation that included wheat, whereas a system relying

solely on maize and soybean would not experience any increases ( Jarecki

et al., 2018), again highlighting the value of including wheat in corn-

soybean rotations for climate change mitigation. Lastly, Chai et al. (2014)

reported 35% less soil respiration when maize was intercropped with wheat

compared to monocrop maize, with a concomitant reduction in CO2

emissions. Crops that generate reduced GHG emissions or have greater

potential for carbon sequestration are an opportunity to mitigate the contri-

butions of agriculture to climate change. Therefore, inclusion of wheat in

maize-soybean dominated systems has the potential to enhance soil health

and cropping system resilience while simultaneously reducing N inputs

and increasing carbon sequestration.
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7. Benefits of wheat in mitigating biotic stresses

7.1 Diseases of commercial crops
Crop rotation is one of the most effective cultural practices for reducing the

incidence and severity of soilborne diseases for most crops, potentially

reducing the reservoir of soil inoculum or fostering an increase in micro-

organisms antagonistic to plant pathogens (Bockus and Shroyer, 1998;

Krupinsky et al., 2002; Rupe et al., 1997). Factors influencing the efficacy

of crop rotation in this regard include, but are not limited to (i) the length

of period between susceptible crop cycles (some fungal reproductive struc-

tures can survive in the soil for years without the presence of a host), (ii) the

inherent genetic resistance of crop cultivars to specific diseases, (iii) the spec-

ificity of disease (some pathogens have wide host ranges), and (iv) other

management practices (e.g., tillage, chemical treatments, etc.). Wheat can

play an important role in breaking disease/pests cycles or reducing the

incidence of certain diseases while still generating economic benefits

(see Sections 7 and 8).

Crop diversification can aid in reducing disease pressure, whereas mono-

cultures and simple binary rotations can allow for pathogens to build up in

the soil (Liu et al., 2022). The soybean cyst nematode, Heterodera glycines

Ichinohe (SCN), is a major threat to soybean production. Although results

have been inconsistent, several studies suggest that the addition of wheat to

soybean rotations can aid in SCN suppression. For example, fields where

wheat preceded soybeans had a 30% lower SCN egg population compared

to fallow, both at the start of flowering and at harvest (Rocha et al., 2021).

Similarly, the addition of wheat to a soybean-sorghum rotation produced a

substantial reduction in SCN compared to continuous soybean in a Kansas

(USA) study, although the effectiveness of this approach was inferred to

depend heavily on the susceptibility of the soybean cultivar to SCN

(Long and Todd, 2001).

The mechanisms behind the effects of wheat on SCN suppression have

been the focus of discussions, with some studies suggesting that wheat

residue, root exudates, and mechanical interference with host recognition

can explain reduced SCN incidence in soybean fields preceded by wheat

(Baird and Bernard, 1984). Wheat residue can lower soil temperature

at soybean planting (see Section 5), and significant reductions in the

density of SCN females and cysts can occur when soil temperatures dip

below 26 °C (Anand et al., 1995). Rocha et al. (2021) suggested that

wheat-induced shifts in the soil microbial community might aid in SCN
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suppression, as wheat appears to encourage the growth of fungi and bacteria

that parasitize SCN cysts and eggs, such as Mortierella, Exophiala, Conocybe,

Rhizobacter spp., microorganisms that are not observed in soybean fields

preceded by fallow. However, a number of years of wheat–soybean rotation
may be needed to obtain significant disease suppression, as the resting stages

of SCN and other microorganisms can persist in soil for several years.

Changes in the soil microbial community caused by wheat residue

decomposition (see Section 6.2) can have an allelopathic effect on soil

pathogens as the microbial communities can produce antimicrobial com-

pounds or compete for resources (Bastian et al., 2009; Peralta et al.,

2018). Beneficial effects of wheat residue in reducing disease incidence in

other crop rotations have been observed. For instance, wheat residues from

a no-tillage cover crop reduced Phytophthora blight incidence on bell pepper

to between 2% and 43%, compared to �70% on bare soil, largely due to

diminished splashing and aerial dispersal of the spores (Ristaino et al., 1997).

Including wheat as a break crop to maize-sugar beet, Beta vulgaris L.,

rotations in Europe suppressed the fungal pathogen Rhizoctonia solani

(K€uhn), a disease that causes root and crown rot in sugar beet, and increased
sugar beet yield, with significant benefits even for cultivars with lower

susceptibility (Buhre et al., 2009). Wheat has been tested as a “rotation-

breaking cereal” in pea, chickpea, lentil, and mustard, and has shown

significant benefits in suppressing Ascochyta blight, an important disease of

chickpea (Nene, 1982). Inclusion of wheat in canola rotations can reduce

incidence of blackleg disease caused by Leptosphaeria maculans, a major

disease of canola in Canada (Guo et al., 2005), improving seed quality

and increasing yields by 5–57% (Kutcher et al., 2013).

Wheat rotations have also been evaluated for control of white mold,

Sclerotinia sclerotiorum, in soybean and canola. Gracia-Garza et al. (2002)

showed a 50–75% reduction in the production of apothecia, white mold

fruiting structures, in a wheat–soybean rotation compared to continuous soy-

bean, even though no yield benefits were observed. Because S. sclerotiorum

attacks a broad range of crops that are often rotated with soybeans (e.g., alfalfa,

edible beans, peanuts, Arachis hypogaea, pulse crops, and sunflower), wheat

can help suppress this disease in fields where it is present (Dorrance and

Novakowiski, 2017; Garza et al., 2002; Paulitz et al., 2015). However,

fungal propagules can be produced on non-host plants, and dormant struc-

tures such as schlerotia can persist in soils for extended periods, so several

years of rotation with wheat (or other non-host crops) may be required to

reduce inoculum levels in a field (Dorrance and Novakowiski, 2017;

Fernando et al., 2004).
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Benefits of adding wheat to continuous soybean or maize, or a soybean–
maize rotation, have been reported for other soilborne pathogens that cause

root rots and other diseases, including Fusarium, Pythium, Drechslera, and

Bipolaris spp. (Gagnon et al., 2019; Govaerts et al., 2006, 2007). A 5-year field

experiment in the semi-arid, subtropical highlands of Central Mexico found a

lower incidence of root rot and the nematode Pratylenchus thornei in maize

grown in rotation with wheat compared to continuous maize under both

no-tillage and conventional tillage treatments (Govaerts et al., 2007). Root

rot incidence was lowest in a wheat–maize rotation under conventional

tillage, whereas the incidence of P. thornei was lowest in a wheat–maize rota-

tion under zero tillage. The effectiveness of crop rotation tactics for disease

management always depend on the disease targeted, and in some cases, wheat

can worsen disease losses in other crops. For example, adding wheat to a

maize-soybean rotation increased the incidence of Fusarium graminearum

(Marburger et al., 2015); although fungicides helped to control the disease

in maize-soybean-wheat and maize-wheat-soybean (harvested as silage)

rotations, they were not effective in continuous wheat, or in maize-wheat-

soybean rotations (not harvested as silage). In this case, the greatest benefits

of fungicides were obtained in rotations without wheat.

Root exudates, produced either by wheat plants or by an interaction of

wheat residues with the following crop, have been implicated as one mech-

anism of disease suppression. Root exudates include simple sugars, organic

acids, and amino acids released from living plant roots into the soil that

influence the composition and function of soil microbial communities

(Grigulis et al., 2013). Because this community affects plant-microbe inter-

actions, it also mediates plant disease dynamics (Kessler and Baldwin, 2002).

For example, intercropping fava bean with wheat decreased the production

of several root exudates that facilitate infection of fava bean by Fusarium

wilt disease compared to a bean monocrop (Lv et al., 2020). The reduced

production of root exudates in the wheat–fava bean intercrop resulted in

lower Fusarium wilt incidence in fava bean and higher root dry weight.

The beneficial effects of wheat rotations for horticultural crops have also

been explored. Apple replant disease is a significant problem in replanted

apple orchards, Malus domestica Borkh, and is caused by soilborne fungal

pathogens (Winkelmann et al., 2019). Greenhouse studies in Washington,

USA, have shown that apple seedlings planted into soils previously used

to grow wheat grew better compared to those planted in soils that were

not sown with a previous wheat crop (Gu and Mazzola, 2003; Mazzola

and Gu, 2000), an improvement attributed to reduced root infections by
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Rhizoctonia and Pythium fungi, and fewer Pratylenchus spp. nematodes. The

bacterial communities inhabiting the soil and the apple rhizosphere varied

across treatments, indicating the potential of wheat root exudates to influ-

ence the soil microbial community. The authors also noted varying effects

of different wheat genotypes on apple seedling growth.

7.2 Wheat as a source of beneficial insects
Crop rotation and diversification practices tend to enhance natural pest

control services, also referred to as “conservation biological control” in agri-

cultural systems (Brust and King, 1994; Rusch et al., 2014). Wheat fields

host many herbivorous arthropods that represent important food sources

for generalist predators and parasitoids in early spring when these species

begin to emerge from winter diapause or hibernation (e.g., Qureshi and

Michaud, 2005; Tauber and Tauber, 1973). These beneficial species

have their initial spring generation in winter wheat and then emigrate from

the maturing crop in vast numbers to colonize summer crops, where they

contribute important biocontrol services (Michaud, 2018). Provided pesti-

cide applications do not disrupt natural biological control processes, most

wheat herbivores rarely exceed economic thresholds, as wheat can compen-

sate for considerable defoliation and other forms of arthropod damage during

vegetative stages (prior to the critical stage) without significant effects on

yield. For example, a study in central Kansas, USA, found that grain yields

remained close to average values even in plots heavily grazed by army

cutworms, Euxoa auxilaris (Grote), at densities that reached 100 larvae

per m�2 (Michaud et al., 2006). Aphids, in particular, are an important food

source for many families of generalist predators, including Anthocoridae,

Chrysopidae, Coccinellidae, Nabidae, and Syrphidae, among others

(Brodeur et al., 2017). On the US Great Plains, wheat hosts many aphid

species, including Rhopalosiphum padi (L.), Schizaphis graminum Rondani,

Sitobion avenae (F.), Diuraphis noxia (Kurdjumov), Sipha maydis Passerini,

and Metopolophium spp., among others. The same biological traits that can

make aphids such formidable pests when their biological control is

disrupted—excellent colonization ability and a high reproductive rate,

facilitated by asexual reproduction and a telescoping of generations (live

birth of pregnant daughters), also render them a reliable and robust food

supply for many arthropod predators early in the season when few other

preys are abundant in the agricultural landscape. Wheat fields have also been

identified as a source of spiders (Aranae), ground beetles (Carabidae) and

rove beetles (Staphalinidae) (Booij and Noorlander, 1992). The movement

91Wheat benefits in crop rotations



of insect predators from neighboring crops can be a more important

determinant of their population density than their numerical responses

within the crop itself (Kieckhefer and Miller, 1967). Thus, in temperate

regions, winter wheat is a critical spring “nursery” crop for beneficial species

that later migrate to summer crops where they contribute to biological

control of many potential pests (e.g., Colares et al., 2015; Lopez and

Teetes, 1976; Prasifka et al., 1999; Rice and Wilde, 1988).

8. Economics

Selection of a suitable crop rotation scheme can be challenging as it

involves the management of tradeoffs between crop yields and yield stability

to maintain profitability and sustainability over time. Although wheat can

increase the yield of rotational crops such as maize and soybean (see

Section 3), it may also lower net returns when wheat is less profitable than

other crops (Singh et al., 2021; Zacharias and Grube, 1984). This effect,

combined with changes in government policies and programs in North

America (Anderson et al., 2001), has recently increased the area of maize

and soybean at the expense of wheat (Rosenzweig and Schipanski, 2019),

although others have noted increased profitability and decreased variability

in net returns result when wheat is included in the rotation (Farno et al.,

2002; Keim et al., 2003; Kyei-Boahen and Zhang, 2006). Helmers et al.

(2001) identified three distinct ways crop rotation can reduce economic risk:

(i) diversification, in which low returns from one crop are balanced by

relatively high returns from another; (ii) lower yield variability of rotations

compared to continuous culture; and (iii) higher overall crop yields and

reduced production costs of rotations. Wheat can provide all of these

benefits since it provides yield benefits of crop diversification (see

Section 3), lower annual yield variability, and a lower production cost than

maize or soybean.

Because wheat can be harvested as grain, high-quality forage, or both

(e.g., dual-purpose wheat), can be double-cropped with summer crops (see

Section 3.1), and can have its residue sold for profit, its economic benefits

should be assessed within the entire portfolio of farm income. Both field

and modeling studies have indicated that grazing wheat offers an opportunity

to increase net returns, provided grazing is terminated prior to the onset of the

critical period (Fieser et al., 2006; Moore, 2009; Redmon et al., 1996; Taylor

et al., 2010). Studies in Oklahoma, USA, showed that double-cropping

soybean with a dual-purpose winter wheat provided the highest average
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net return, followed by a simple double-crop soybean-wheat system, and

lastly by monocrop soybean (Farno et al., 2002; Keim et al., 2003; Kyei-

Boahen and Zhang, 2006). These studies found lower variability in annual

net returns in rotations that included winter wheat due to more stable net

returns that resulted from more stable yields. Alternatively, in years with

lowwheat prices or environments in which wheat residue limits summer crop

development due to cooler soil temperatures (see Section 3.5), wheat straw

can be removed and sold as hay to increase system profitability (e.g., Roth

et al., 2021). Maize and soybean systems that include wheat can have similar

or greater net returnwhenwheat straw is sold, as observed inNewYork,USA

(Katsvairo and Cox, 2000a; Singer and Cox, 1998b), New Jersey, USA

(Singer et al., 2003), and Quebec, Canada (Gagnon et al., 2019).

A few studies have reported greater net returns from rotations con-

sisting of maize and soybean only, mainly due to the higher profitability

of these crops (Singh et al., 2021; Zacharias and Grube, 1984).

However, Janovicek et al. (2021) showed that adding winter wheat to a

maize-soybean rotation every 4–5 years can lead to greater long-term

net returns and lower risks of revenue reduction while providing the sus-

tainability and environmental benefits of crop diversification. Similarly,

Meyer-Aurich et al. (2006a) observed that a maize-soybean-wheat

rotation consistently provided the higher and more stable net returns

(by $30–$64ha�1) compared to continuous maize or a maize-soybean

rotation, and was less sensitive to increasing energy costs. In comparison,

although the profitability of continuous maize was the highest in some

cycles, it was the lowest in most cases. Incorporation of wheat into a

maize crop rotation can reduce the variance of net returns when costs

are variable (Peterson et al., 1991). Although the mean returns over var-

iable costs may be slightly lower in a rotation that includes wheat, farmers

may wish to minimize risk by accepting a lower potential return in

exchange for a more consistent one. In Kansas, USA, a rotation of grain

sorghum and winter wheat has been preferred by moderately risk-averse

producers, whereas monocrop winter wheat or grain sorghum has been

preferred by the more risk-averse (Williams et al., 2000).

The optimal rotation clearly depends on region, climate, and manage-

ment practices. In a study in Brazil, Garbelini et al. (2022) found that

replacing second-crop maize with wheat in two out of four years of a rota-

tion cycle resulted in a higher cumulative profit, as second-crop maize often

yielded negative returns. In the Mississippi Valley, USA, double-cropped

soybean-wheat rotations can yield higher net return per unit of irrigation
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water when monocrop soybean does not cover production costs (Wesley

and Cooke, 1988). The monetary return per unit of irrigation water was

higher for a double-cropped soybean-wheat system than for monocrop

soybean ($29.28 vs $17.77 per 25.4mm) (Wesley et al., 1991). Including

wheat in irrigated cotton systems in Australia resulted in higher average gross

margins per unit of irrigation water compared to a cotton monocrop

(Hulugalle and Scott, 2008) and required half the irrigation water (Farrell

et al., 2008). Moreover, cotton systems were more profitable than mono-

crop cotton when rotated with wheat, fava beans, or dolichos, Lablab

purpureus (Hulugalle et al., 2002).

9. Concluding remarks

The area under wheat cultivation has decreased in various regions of

the world due to the expansion of summer crops that, on their own, may

seem more profitable. Here, we provided evidence of a wide range of

benefits—many of which are specific to wheat—and explain its benefits

within various cropping systems. Wheat offers a range of tactical and strate-

gic flexibilities that can benefit farming operations and reduce their environ-

mental footprint. Wheat can increase overall grain yield and decrease yield

variability of other crops in a rotation. In less complex cropping systems, the

addition of wheat can enhance agroecosystem diversity, improve the resil-

ience of cropping systems against biotic and abiotic stresses, and reduce

the input requirements of other crops. When available, we emphasized

the underlying biological mechanisms generating these benefits; however,

we note that many of these are not yet well understood, originating a num-

ber of research opportunities to explore the synergistic effects of wheat on

cropping system productivity and resilience, beyond mere grain production.

Promising traits warranting further investigation include the allelopathic

potential of wheat against weeds, increased N availability through

rhizodeposition, and improvement of the composition and longevity of

wheat residues. Because some recent evidence suggests that wheat often acts

as a net carbon sink, policy development could encourage its adoption to

potentially aid in mitigating agricultural contributions to climate change.

The diversification of simple crop rotations by incorporation of wheat

should be stimulated to foster a more sustainable and resilient agriculture

with the potential to feed a growing population while reducing its environ-

mental impacts.
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